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ABSTRACT
Electric vehicle (EV) adoption and car sharing use have seen

strong growth over the last decade due to recent advances in

technology and information systems. Yet, the chicken-egg

problem of charging station construction vs. EV adoption

limits faster expansion. Car sharing of electric vehicles, how-

ever, has the potential to help reduce people’s risk aversion

towards EVs, reduce the overall number of cars in already

congested cities, and increase the share of stable demand

for operators to incentivize the construction of more char-

ging stations.

This paper aims to address a current research gap in the

creation of predictive models using point of interest data

to determine optimal charging station locations. The best

model is constructed using multiple large data sets of EV

car sharing (parking) data, which spans over one year in five

large European cities, as well as point of interest informa-

tion. The results show a high predictive accuracy, especially

where information on different types of point of interests is

high. Overall the model outperforms any naive model by

24.1% in targeted accuracy and can be used as a decision

support system for operators to reduce risk from charging

station misplacement. Finally, various areas are identified

where information from e.g. charging station operators on

the profitability of stations has the potential to further in-

crease the model’s performance.

1. INTRODUCTION
Recent advances in technology and information systems have

significantly improved the offering and market for electric

vehicles (EVs) with more than 1 million vehicles on the

road worldwide in 2016 [34]. EVs are expected to contribute

significantly to climate change mitigation [11] and improve-

ments in urban air quality [7] as well as a decrease in fossil

fuel dependency [19]. Mainly for these reasons national gov-

ernments are working together globally to increase overall

EV adoption as in the case of the Electric Vehicle Initiat-

ive founded by 16 major industry nations with the goal of a

“global deployment of 20 million electric cars by 2020” [17].

Nonetheless, electric vehicle adoption does not increase as

fast and widely as expected with, for example, Germany re-

cently abandoning its goal of more than one million EVs on

the road by 2020 [59]. Various recent research in the field

has identified the following problem areas hindering faster

adoption: Range Anxiety [25] (the fear of being stranded

without any battery charge left), the chicken egg dilemma

(of EV charging stations) [28], vehicle purchasing prices [71],

overall economic viability [66] and poor consumer informed-

ness [47]. To contribute to potential solutions in the afore-

mentioned problem areas, this paper aims to improve un-

derstanding of electric vehicle usage and infrastructure by

analyzing EV car sharing data and developing a predictive

approach for the placement of charging stations.

The focus on the comparatively narrow car sharing sector

with the goal of contributing to rather wide topics like over-

all electromobility and sustainability is motivated by two

main aspects: Car sharing has a signaling effect on poten-

tial future EV owners and sharing can often better than

owning:

Recent research suggests that car sharing and electromobil-

ity form a “circulus virtuosis”[24] by encouraging custom-

ers to test the novel vehicles risk-free hence increasing their

likeliness to buy an EV and on the other side by providing

a baseline demand for charging stations in and around city
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centers. This interaction is expected to help reduce range

anxiety and to increase product awareness on the consumer

side while ensuring stable revenue on the provider side. Ulti-

mately, both parties are lowering the impact of the chicken-

egg dilemma. It is then more profitable for providers to

install charging infrastructure if there are more EVs on the

road. Consumers, in turn, are more inclined to purchase

battery-only electric vehicles (BEVs) being reassured that

the likelihood to search for charging stations for too long

or to run out of battery mid-ride is significantly reduced.

Finally, Brandt et al. [8] find that users of electric car shar-

ing vehicles adopt similar usage patterns to those of users

of internal combustion engine (ICE) vehicles quickly, the

positive effect the exposure from car sharing has on people’s

aversion towards BEVs in general.

The car sharing sector has seen very strong growth rates at

30 - 60% year over year during the last decade [39], [54] and

is even at times praised as“the winning game for automotive

OEMs [Original equipment manufacturer]” [44]. In fact, car

sharing is both, better for social and often individual welfare

than owning a car: the average idle time of a privately owned

car is estimated at 90 - 95% [4] while car sharing vehicles

achieve utilization rates of up to 20 - 25% 1. Making use

of car sharing hence could translate into direct savings for

people not using their cars often and can in turn also elim-

inate cars from the street, which is generally good for social

welfare. Mitchell et al. [43] even find that car sharing in an

urban setting can eventually reduce idle time so drastically

that a mere 15% of the initial fleet of cars would be needed.

Replacing private vehicles by shared BEVs and therefore re-

ducing the total number of vehicles in cities would lead to

reductions in micropollutants, CO2 emissions and free up

tight parking space. And while EVs are going to become

more environmentally friendly from year to year, EVs can

nowadays still be more polluting than ICEs [31], depending

on the source of energy, when and how often they are used.

Sharing a vehicle by virtue reduces the emissions per capita

enough to make any EV the more sustainable solution now

and even more so in the future.

While many large western cities already have (EV) sharing

schemes in place, smaller western cities and most cities in

Asia, Africa and South America [53] are still heavily under-

served. Yet, developing nations are by far the biggest con-

tributors to the increase in urban population for the next

decades to come [61] and therefore also those nations with

the largest increase in urban vehicle use. This has already

become an issue in many cases with pollution and congestion

reaching unprecedented levels[48], hampering the economy,

1Car2Go, Amsterdam, 2016

damaging the environment and attacking the health of res-

idents. Beltz et al. [5] find that car sharing can have signific-

ant effects in abating the impact of these threats. And even

though the situation in western mid-sized cities, where BEV

car sharing is also rarely in place [50], is not as severe, the

number of cars per capita still increases inversely to the size

of a city [40]. Hence BEV car sharing in western mid-sized

cities can have the power to replace even more privately-

owned cars per person and reach more ICE car owners than

in larger cities.

Nonetheless, in both cases, introducing BEV car sharing

is still subject to the chicken-egg dilemma as described by

Gnann et al. [27]. The authors find that without sufficient

public charging infrastructure, the desired adoption rates of

EVs remain unrealistic and, in turn, operators, receiving no

financial benefit, are lacking an incentive to build the needed

charging infrastructure. Other scholars like Brooker et al.

[10] and Guo et al. [32] confirm this finding. Trying to

solve the dilemma, they focus their research on finding the

most suitable locations for profitable electric vehicle char-

ging stations. In further studies on charging station place-

ment, Madina et al. [41] and Gopalakrishnan et al. [29]

use several different data sources and find a strong relation

between charging demand and points of interest (e.g. the

location of restaurants, museums, shops) when modeling the

problem. Additional research by Wagner et al. [69] applies

these insights in a car sharing context, confirming the im-

portance of points of interest (PoI) for parking pattern mod-

eling. Yet the majority of studies use ICE vehicle parking

patterns as a proxy for their EV charging models [10] & [14]

and none have used real BEV parking behavior in combina-

tion with the actual point of interest information to model

charging station placement.

With a gap in current research on modeling charging station

placement and having access to both real BEV (car sharing)

parking behavior and recent point of interest information the

following research question was defined:

How can point of interest information
be used to improve decision making in

charging station placement?

In the following, Section 2 reviews related work and literat-

ure, Section 3 the data used for modeling and Section 4 the

methodology employed. The results are discussed in Section

5 and discussed in Section 6. A conclusion on the results and

potential future research is drawn in Section 7.
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2. RELATED WORK AND LITERATURE
With reference to the research question, related work and

the necessary literature for building a theoretical model are

examined and finally, hypotheses to be tested are derived.

2.1 Charging station placement
As the number of BEVs grows every year, so has research

on how to optimally meet the charging demand of these

vehicles. Since this research has only gained traction over

the last decade and information on both charging as well as

driving and parking patterns is difficult to acquire, most of

the research papers develop theoretical models or use older

ICE survey data as proxies.

Lam et al. [38] for example develop an “Electric Vehicle

Charging Station Placement Problem” purely based on the-

oretical assumptions without any data to test their model

on. The model developed aims at optimizing location util-

ization and availability while minimizing station cost. The

approach is picked up by Guo et al [32] who develop the

model further by validating its assumptions and applying a

further theoretical method (fuzzy TOPSIS optimization) to

qualitative characteristics of Beijing’s charging infrastruc-

ture. The model is employed by Sathaye et al. [51] who

apply it to real US Census, Department of Transportation

trip information from Texas and charging station data. The

authors find that information on the density of charging sta-

tions, traffic, and points of interest are most important in

successfully applying their model. However, the paper con-

cedes that “there remains significant uncertainty regarding

the estimation of demand for BEV charging, due to a lack

of available information on BEV driver behavior” [51].

Similar to the aforementioned work, Chen et al. [15], Dong

[18] and Funke et al. [26] use ICE trajectory data to de-

termine traffic density and derive theoretical charging de-

mand for EVs from the data. The authors also find that

points of interest influence the theoretical charging demand

and point out the importance of their distance to the des-

tination. Dong finds that “electric [vehicle] miles and trips

could be significantly increased by installing public char-

gers at popular destinations, with a reasonable infrastruc-

ture investment”. Ultimately all three papers propose that

future research should assess the relationship of points of in-

terest and real EV driving data. Along with this proposal,

Brooker at al. [10], in a recent study, explore the connection

of PoIs with survey and recorded charging data. The study

finds that “public charging is most likely to occur at work,

shopping and social destinations”, all identified by points

of interest at the destination and concludes by stating that

“understanding the driving patterns of vehicle owners is crit-

ical[. . . ]” in determining the need to charge.

The approach of analyzing driving patterns and points of

interest is applied in the work of Xi et al. [72] where the

authors use ICE driving data to estimate charging station

demand for the categories “work”, “university” and “shop-

ping”. The report finds that all three factors significantly

improve utilization modeling, yet state that more should be

taken into consideration and that “it is more appropriate to

focus on EV arrival and departure times from parking lots

since this is when slow charging can be reasonably done”.

In a series of papers, Wagner et al. [69], [70] & [68] use

free-float (pick up and drop off cars anywhere within the

operating area) car sharing data in combination with spa-

tial smoothing and regression analysis. The authors find

significant relationships between different types of PoIs and

EV charging stations considering the distance of points of

interest. When determining the influence of PoIs on the

parking behavior of car sharing users, the willingness-to-

walk (to different locations), in other words, the distance to

close by PoIs, proofed to be statistically significant and was

considered with the inversely weighted distance in meters.

2.2 Predictive and Spatial modeling
Shmueli et al. [20] argue that in the field of Information

Systems (IS) research, where the majority of studies employ

explanatory models, “predictive models and testing play an

important role in assessing the practical relevance of existing

theories, and quantifying the level of predictability of phe-

nomena”. Successfully applied predictive models can hence

augment the credibility of existing theories. With a general,

growing availability of data across industries, countries, and

practices, as well as the availability to store and share this

data ever more, theoretical models can more often be val-

idated with new data sets hence show their actual value

in explaining new observations. Especially in the field of

information systems the emergence of “big data” and ma-

chine learning technologies supports scholars and companies

in gathering, storing and analyzing larger data sets, making

it possible to validate theoretical models and to apply them

to numerous new observations.

In predictive theory, the interpretability and veracity of a

model are of lesser significance: a model that captures all

aspects of a problem may be less “predictive” than a less

realistic model [56]. Concepts such as transparency, inter-

pretability, and multicollinearity that are firmly established

in explanatory research are therefore of secondary import-

ance [20]. Ergo, non-parametric methods like machine learn-

ing algorithms are often used in predictive modeling.

In the research area of this paper, very few studies have fo-

cused on testing the predictive power of their models, none
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have developed predictive models for charging station place-

ment in combination with PoI and BEV car sharing data.

Arias et al. [2] develop a model for demand prediction that

identifies peaks throughout the day and aims at optimizing

load. While the authors can show the predictive value of

their approach, modeling and predicting the daily fluctu-

ations of EV charging is of no added value to this research.

However, Arias et al. confirm that adding PoI data to their

predictive models improves the prediction accuracy signific-

antly. Another paper by Wagner et al. uses car sharing data

and develops a predictive model for the number of rentals in

one city. The authors lay a grid over the city area, aggreg-

ate the number of rentals per cell, add the point of interest

information and ultimately find “that [their] approach cor-

rectly identifies areas with a high car sharing activity and

can be easily adapted to other cities.” [68].

In an effort to create predictive models for the change in tree

population induced by global warming, Prasad et al. [49]

also divide the area under consideration into rasterized cells

and compare multiple machine learning algorithms, conclud-

ing “superior predictive capability” of Random Forest mod-

eling for spatial data. Oliveira et al. [46] use the ensemble

learning method Random Forest to predict wildfires and ar-

gue that because the data is highly irregular and clustered

spatial autocorrelation might influence the predictive power

of their model. Spatial autocorrelation may arise when prox-

imal locations (i.e. adjacent cells) are correlated as in the

case of wildfires and also vehicle parking behavior.

Oliveira et al. use adaptive kernel density estimation (also

referred to as spatial smoothing) to control for spatial auto-

correlation and find that the “[Random Forest] model seems

to incorporate much better the effects of spatial autocorrel-

ation”.

Yet, arguing that smoothing the data “hides” information

in predictive modeling and reduces location accuracy, Kam-

itani et al. [36] consider the value of adjacent cells when

creating a predictive model for the identification of voxels in

MRI brain mapping.

Mascaro et al. [42] further add spatial location indicator

information to a model predicting the deforestation rate

to control for spatial autocorrelation and find that predic-

tions improved by 60% in adjusted R2. Noting that non-

parametric models like Random Forests do not expressly

incorporate any spatial structure, Chefaoui et al. [13] pro-

pose the inclusion of a variable indicating a trend in the

geographic space, in other words, an anchor point, to ac-

count for spatial structure without reverting to smoothing

of any information.

Research goals

From the above review of the literature and related work,

it is concluded that current research lacks the application

of theoretical charging point location prediction models to

realistic EV parking data for the creation of robust pre-

dictive models. Previous research suggests that prediction

problems for charging station placement should be modeled

using gridded EV parking data and can be significantly im-

proved when including PoI information. Additionally, the

ensemble learning method Random Forests performed well

in similar grid-based spatial prediction problems.

It is further to be noted that no research thus far employed

the combination of real EV parking data with points of in-

terest to predict the optimal locations for charging point

placement. Optimal locations being those that maximize

profit for operators and consider charging capacity and avail-

ability for car sharing users. Based on the work and findings

of related research, this paper will validate whether (1) point

of interest information can be used to predict profitable EV

charging locations in mid-sized to large cities and (2) the

validity of such predictive models holds true across cities.

3. DATA
In this section, the data acquisition process, its contents,

and transformation are described.

3.1 Data acquisition and description
Using a custom-build web scraper application, real BEV

parking data from the two major car sharing providers Car2Go

and DriveNow was collected. The data was collected over at

least 9 months per city (see table 2) and holds the location,

timestamp, fuel level and unique id per car. Information on

point of interest (PoI) was acquired through Google’s public

API2}. This PoI data holds information on location, type,

price and rating of PoIs in each city.

3.1.1 Car sharing data
Both car sharing companies operate a free-float scheme in

multiple cities worldwide where users can pick up and drop

off vehicles at any public parking spot in a defined area

within the city. Customers can rent the cars through an app

or RFID card on the spot and pay on demand in-between

29 to 34 Euro cents per minute which include all insurance

and fuel cost. Optionally customers can rent the cars for

multiple hours at once and pay a chapter fixed rate. For

customers to locate the vehicles, both operators offer a mo-

bile and web application to locate all vehicles that are not

2https://developers.google.com/places, accessed on June
14th, 2017
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Table 1: Example of original car sharing data

Id Lon Lat FuelLevel(%) Charging Timstamp

WBY1Z210X0V307780 55.69196 12.57878 83 TRUE 2016-07-30 13:55:06

WBY1Z210X0V307780 55.69196 12.57878 84 TRUE 2016-07-30 14:00:06

WBY1Z21080V308071 55.66487 12.51916 53 FALSE 2016-07-30 10:48:16

WBY1Z21080V308071 55.66487 12.51916 53 FALSE 2016-07-30 10:53:16

WBY1Z21080V308071 55.79005 12.59147 39 FALSE 2016-07-30 12:10:16

in use at a given moment. The web scraper application col-

lected this information every five minutes over a period of at

least 9 months (2016-07-31 to 2017-04-30, about 84 million

observations). While cars are rented they do not appear on

the mobile or web application and are hence not recorded.

As target cities, Amsterdam, Munich, Stuttgart, Copenha-

gen, and Berlin were chosen, because of each city’s relatively

high share of electric vs. ICE vehicles to evaluate the model

on. In addition, all cities are in similar climate zones [37]

which reduces the variation in battery performance across

cities [73]. Amsterdam and Copenhagen are extremely sim-

ilar in terms of communiting and traffic patterns [21], so are

Berlin, Munich, and Stuttgart[22]. Overall the five cities are

still similar very similar to each other.

Table 2: Car sharing data per city

City Operator Obser-

vations

BEVs Record

(months)

Amsterdam Car2Go 25027666 338 9

Berlin Drive Now 5349875 135 12

Copenhagen Drive Now 17548977 399 9

Munich Drive Now 2144178 85 9

Stuttgart Car2Go 34576399 501 9

3.1.2 PoI data
The PoI data has been collected via the Google develop-

ment API in May 2017. It holds information on the loc-

ation, name, rating (on a scale from 1 to 5), price (on a

scale from 1 to 4) and type (i.e. a gym holds the attributes

establishment, gym, health). As the Google API restricts

the number of PoIs that can be downloaded at once, for

a given coordinate and radius, to 60 per call, a hexagonal

grid was used to divide each city’s area. To optimize the

trade-off between geographic accuracy and computing cost,

the distance between the centroids of the hexagons is set to

128 meters where ≈ 0.4% of lesser ranked PoIs3.\ Charging

points are also considered points of interest but were not

exported via the Google API. The location information of

charging points was extracted from the car sharing data set

by identifying all unique locations where Charging = TRUE

was recorded.

Table 3: PoI information per city

City No. types Observations

Amsterdam 100 110496

Berlin 101 227896

Copenhagen 105 116272

Munich 107 155720

Stuttgart 106 75728

3.2 Data preparation
To answer the research questions, the charging demand in

any given area of each city must be determined to identify

whether an area can be considered profitable for charging

point operators. Since the data only holds information on

car sharing parking behavior and the cars do not charge

every time they are parked, one must estimate the potential

charging demand per parking instance in kWh and account

for the potential charging demand of private vehicles. Po-

tential charging demand will, from here on out, be referred

to as charging demand. The initial raw data must at first

be aggregated to parking instances, i.e. a record of the time

before and after a car is moved to a new location and is

defined as follows:

pi = (id, lon, lat, fuels, fuele, ts, te, chg) (1)

3Ranking determined by Google, see footnote 2
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Where id is the unique id of the car, lon & lat the coordin-

ates of the parking instance, fuel the start (s) and end (e)

levels of fuel in percent, t the timestamp at the start and

the end of the parking instance and chg whether the car was

charging at the point of recording.

Both Car2Go and Drive Now automatically lock down their

cars if connected to a charging station and have fuel levels

of less than 75%. This ensures that cars are sufficiently

charged for the next customer and are not rented before the

battery reaches at least 75% again. During the lockdown,

the web scraper is not able to record a car’s location or activ-

ity, as this car is “artificially” rented by the company itself.

To control for this loss of information, all parking instances

which succeed a lockdown are identified and the fuel level

and parking instance start times corrected through mean

interpolation. The record for fuels at lockdown parking in-

stance pt is adjusted to fuel.adjs,pt with:

fuel.adjs,pt = fuels,pt −
1

n

n∑
i=2

(fuele, pi−1 − fuels,pi)

−(fuele,pt−1 − fuels,pt)
4

(2)

fuel.adjs,pt =

1, if fuel.adjs,pt < 1

fuel.adjs,pt , otherwise
(3)

The record for ts at lockdown parking instance pt is adjusted

to t.adjs,pt with:

∅δmin
5 =

j∑
j=2

(te,pj−1,chg=1 − ts,pj ,chg=1)

j∑
j=2

(fuele,pj−1,chg=1 − fuels,pj ,chg=1)

(4)

t.adjs,pt = ts,pt −
1

n

n∑
i=2

(te, pi−1 − ts,pi)

−((fuels,pt − fuel.adjs,pt)×∅δmin)

(5)

t.adjs,pt =

ts,pt−1 , if t.adjs,pt < 0

t.adjs,pt , otherwise
(6)

With the corrected fuel levels, start and end times the po-

4Averages always calculated without lockdown instances
and extreme values
5Average time (in minutes) per percent of charge loaded

tential charging demand per parking instance can be calcu-

lated. To avoid overestimation only the amount of energy

used in a car’s previous trip (pi−1) is accounted for as poten-

tial charging demand at the location of the current parking

instance (pi). For the sake of simplicity, it is assumed that

all cars are put in service with an initial battery load of

100% and hypothetically fully recharge their battery during

every parking instance. In such a way, one can safely ag-

gregate real charging demand at the locations of all parking

instances and will never account for more potential demand

than the amount that is charged in reality. The maximum

deviation of total potential charging demand vs. the amount

actually charged is ≈ 1.5 kWh per car per month in any of

the targeted cities due to mean interpolation deviations.

∅δcharg =

j∑
j=2

(fuele,pj−1,chg=1 − fuels,pj ,chg=1)

j∑
j=2

(te,pj−1,chg=1 − ts,pj ,chg=1)

(7)

∑
tpi = te,pi − ts,pi (8)

fueltpi−1,pi
= ‖ (fuels,pi − fuele,pi−1) ‖ (9)

Qd,pi =


fueltpi−1,pi

, if fueltpi−1,pi
<

∅δcharg ×
∑
tpi

∅δcharg ×
∑
tpi , otherwise

(10)

With ∅δcharg being the energy (in percent) charged per

minute on average,
∑
tpi the duration of the parking in-

stance and fueltpi−1,pi
the amount of battery charge used

for the previous trip. Qd,pi , the potential charging demand

for parking instance p {i}, is equal to fueltpi−1,pi
if the dur-

ation of the parking instance would permit recharging the

car fully, else it is calculated as the duration of the parking

instance times the average load charged per minute and left

over demand carried on to the next parking instance pi+1.

Figure 3.2 describes two sample trajectories of a car starting

one rental in cell A, stopping it in cell B before embarking

on its next rental journey to cell C. Trajectory 16 being the

very first trip a given car has ever completed, cell B would,

in this case, be credited with Qd,p1 , cell C with Qd,p2 .

6The exact trajectory of a car is not known, figure only for
illustration
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Figure 1: Charging demand accounting
Note: Sample trajectory of one car in a given city for illus-
tration. The delta in fuel level from first tip (A to B) will be
recorded as potential charging demand at the desitnation (B).

To aggregate demand in a meaningful way, the city map is

overlayed with a grid, splitting the area into thousands of

cells as proposed by Wagner et al. [70] and Ahn et al. [1].

This transformation primarily helps to understand the char-

ging demand of a certain area, rather than just at a single

parking spot. Most cities have parking rules by which only

EVs can park on EV charging point lots and must leave when

charged [3]. It is therefore assumed that reducing the hy-

pothetically available parking spaces (when charging) from

all parking spots (where potential charging demand is recor-

ded) in one cell to only two per charging station, would cover

the parking demand. Similar to Wagner et al. a cell size of

200 meters × 200 meters is chosen, to design a fine-granular

grid, however, using a hexagonal instead of a regular square

(fishnet) grid.

Mapping the potential charging demand to the hexagonal

grid was done for a multitude of reasons as described by

Birch et al. [6]: First and foremost hexagons lower the

sampling bias from edge effects and are more compact, hav-

ing a lower shape index (the
perimeter2

area
ratio) than squares.

This allows hexagonal grids to model patterns more accur-

ately and to tessellate into a continuous grid (rather than

aggregating the data in circles which have perfect shape in-

dices but must overlap to cover the entire data set).

Furthermore, all neighbors of a hexagonal grid cell have

the same distance to its centroid. This is of great import-

ance when considering the willingness-to-walk (WTW) of

car sharing users in the modeling efforts. Van der Groot [65]

linearly weighs the importance of points of interest for the

parking decision of drivers when considering their WTW.

With a maximum radius of a 40-minute walking distance, a

point of interest would be 50% as important for the parking

decision if it is 20 minutes away by foot compared to a park-

ing location with no walking distance to a specific point of

interest. As a grid is employed for the aggregation of char-

ging demand, weighing every point of interest individually

based on their distance is not possible, but using different

thresholds for the willingness-to-walk as proposed by Unter-

mann et al. [62] is. Taking advantage of the equal centroid

to centroid distance of neighboring hexagons one can con-

struct multiple “circles of influence” for the willingness-to-

walk around each hexagon. The thresholds in willingness-

to-walk are loosely based on Untermann et al.’s suggestion

of 100, 200 and 500 meters with the actual values being 107,

214 and ≈ 399 meters to accommodate a hexagonal side

length of 214 meters which produces an area of 40,000 m2,

similar to Wagner et al.’s 200 × 200-meter grid.

Figure 2 shows the advantage of a hexagonal grid vs. a fish-

net grid where all willingness-to-walk distances are equal for

the first ring and almost equal to the second. On the con-

trary, the fishnet grid has much larger differences in distance

for each ring. While Van der Groot et al. and Wagner et

al. weigh the different distances, linearly and with a Gaus-

sian kernel density estimation respectively, this paper’s ap-

proach refrain from imposing a weight on the importance of

the distance of certain PoIs as the machine learning method

Random Forest will do so when training the model [60].

Figure 2: Hexagonal grid vs. fishnet grid

Note: In a hexagonal grid, AB and AC have the same distance,
in a fishnet grid point B will be further away. For the grid
granularity used in this paper, AC in the fishnet grid would
be ≈ 88 meters further away than AB.

To add a spatial component to the data model, as dis-

cussed in the literature review, the distance between an

anchor point (the city center) and all cells are calculated.

The distance was computed using the Haversine or great-

circle distance which accounts for the earth’s spherical sur-
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face between two points [64].

To account for seasonality, all observations over all full nine

months are taken into consideration and aggregated per cell

and month. The data sets for Amsterdam and Stuttgart

hold observations of more than a year at the time of this

writing, therefore all months over the span of one full year

(2016-03-31 to 2017-04-30) were considered. The months

June and July had to be eliminated as they only held ob-

servations of a factor of 10 or less than all other months

across the entire data set. This extreme fluctuation cannot

be considered a change in seasonal demand as both May and

August hold as many observations as the all other regular

months. To calculate the potential charging demand per cell

per year the average demand per cell and months is derived

and multiplied by twelve to obtain the yearly demand per

cell Qd,yr(cid):

Qd,yr(cid) = 12× 1

m

m∑
i=1

(Qd,m(cid)) (11)

With m being all recorded months except June and July

and (Qd,m(cid) the aggregate demand per cell and month.

The yearly aggregate is then multiplied by the kWh value of

one percent of battery capacity 7 to transform the charging

demand from battery percentage points to kWh.

3.3 Profitability
As the potential profitability of one or more charging sta-

tions in a given cell needs to be assessed, the further poten-

tial charging demand from private and company EVs must

also be taken into consideration. The ratio of total kWh

sold to Car2Go over the total amount of kWh sold in Am-

sterdam in 2016 [16] is used for adjustments. The resulting

14.5% 8 is used to inflate the charging demand to amounts

that account for car sharing and private demand per cell.

The ratio is used to adjust demand across all cities assum-

ing that the share in the other four cities is equal and that

the additional demand at all stations used by car sharing

BEVs can be covered with this ratio.

The cost for the installation and maintenance of two-outlet

charging points is based on a report by NPE, a German

EV charging infrastructure initiative [45] and confirmed by

two of its members 9. Charging stations are expected to

70.188 kWh/percent for DriveNow, 0.176 kWh/percent for
Car2Go
8 559507kWh

3858673kWh
, charging demand Car2Go over the total in

Amsterdam 2016, calculated from acquired data and report
by the city of Amsterdam[@Charg2016]
9Fabian Deipenbrock (DB Energie GmbH) on May

be operable for 10 years on average [52], yearly cost, ignor-

ing depreciation and interest, is therefore calculated over a

time horizon of 10 years. The following cost estimates are

assumed to hold true across all three countries (Germany,

Netherlands, and Denmark) the data was collected for.

Table 4: Cost per charging station per year

Expenditure Cost in Euro

Installation (CAPEX) 1,000

Maintenance (OPEX) 800

Total cost 1800

The revenue per kWh sold for charging station providers,

however, varies substantially per country and depends on

whether a provider is also an energy producer or needs to

buy the energy for retail prices. For the analysis, a conser-

vative scenario where the charging station provider has to

buy the energy at a retail price level was chosen. The whole-

sale energy prices per county are also listed to illustrate the

additional margin energy producing companies could reap

when offering their energy at charging stations. All prices

are in Euros and per kWh:

Table 5: Energy prices for station providers

Country Production

cost

Retail

price 10

Sales price

(at station)

Denmark 0.053 11 0.39 0.71 12

Germany 0.056 13 0.29 0.54 14

Netherlands 0.044 15 0.19 0.33 16

With the above price and cost listings one can calculate the

number of stations that would be profitable per cell given

the calculated demand, cost, and potential revenue:

Qd,st(cid) =

Qd,yr(cid)×margin× 1

0.145
−(cost) + profit

 (12)

13th, 2017, Johannes Hauck (Hager Electro GmbH Co. KG)
on May 19th, 2017

10Eurostat, for year 2015
11Levitt 2016, for year 2015
12EONDenmark 2017, retrieved on June 14th, 2017
13Stromreport 2017, for year 2015
14Goingelectric 2017, retrieved on June 14th, 2017
15Planbureau 2016, for year 2015
16NuonEnergy 2017, retrieved on June 14th, 2017
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With Qd,st(cid) being the number of stations expected to be

profitable per cell, margin the sales price minus the pur-

chase price of energy per kWh, cost the yearly cost per sta-

tion and profit the targeted profit per station (200 Euros in

profit per year and station assumed).

As EV charging infrastructure is still largely subsidized [55]

and the method may not have captured all potential de-

mand, the calculated number of the profitable charging sta-

tion is always lower than the number of charging stations ac-

cessed by the car sharing vehicles as can be seen in the table

below [6]. Using real EV parking data to identify poten-

tially profitable locations guarantees that no-parking zones

are not considered at all. As no parking data was recorded in

no-parking zones in the first place, they cannot be identified

as profitable locations in the calculation.

Table 6: Charging stations per city

City Existing

stations

Profitable

stations

Amsterdam 1303 351

Berlin 462 149

Copenhagen 419 348

Munich 154 77

Stuttgart 669 494

The last step in preparing the data for analysis and model

application is to count all points of interest per cell (cid) and

for the two rings of adjacent cells representing the willingness-

to-walk features. Even though up to 107 unique types of

points of interest were recorded, only 97 unique types of

points of interest which [10] matched across all cities were

used for modeling. The point of interest count per cell was

marked with just the PoI type’s name, i.e. shopping_mall,

the first willingness-to-walk ring holding the sum of all 6

adjacent cells with shopping_mall_r1 and the second ring

holding the sum of all 12 next-adjacent cells with shop-

ping_mall_r2.

3.4 Descriptive statistics
Previous research in the field has repeatedly stressed the

strong influence of points of interest on parking and charging

demand. One could, therefore, be led to the assumption that

the density of points of interest would itself already influence

the parking and charging demand and expect an increasing

relationship of PoI density and charging demand per cell.

However, looking at Figure 3, where extreme values from

cells with e.g. airports have been removed, one can see that

the trend is at most of the moderately inclining nature.

Figure 3: Point of interest density on mean cell-aggregate

charging demand (in kWh)

Note: The number of points of interest observed (x-axis) vs.
the mean aggregate charging demand per cell (y-axis). A
loess (LOcal regrESSion) line was fitted onto the scatterplot
to illustrate that a growing number of point of interests has
often a bell-shaped relation to the charging demand. At very
high PoI count numbers, charging demand often drops again,
therefore the PoI density is not expected to be a sole predictor
of charging demand.

It is likely that this bell shape is caused by parking restric-

tions and bans in the densest parts of city centers and indic-

ates that charging demand can be influenced by the number

of PoIs up to a certain extent, after which the type of PoI

might play a bigger role.

A simple linear regression allows for the first impression on

features which have a strong influence on the charging sta-

tion locations that have been identified as profitable. Table

[11] in Appendix I shows all statistically significant (p<0.01)

features of a linear regression17 with the entire feature space

on the count of profitable charging stations per cell. One can

see that, as expected and consistent with previous findings,

the density of points of interest, the existence of charging

points and the distance to the city center have great influ-

ence on the target variable.

PoI types such as bar, university and car rental are also pos-

itively relevant and significant. Given that all three types

typically have very different surroundings (bars would be

in more dense areas whereas universities have more space

around them and car rental branches are often close to ma-

jor roads and away from the city center), one can expect the

17Fixed effects (seasonality, charging stations and neighbor-
hood) included

9



Figure 4: Charging demand per hexagonal cell in Amsterdam

Note: Each cell holds the aggregate mean monthly charging
demand. While the city center holds more cells with high
charging demand, no clear pattern or can be observed. This
underlines the observation in Figure 3 that PoI density, which
is higher in the city center, does not forcibly correlate with a
higher charging demand.

specific type of PoI to play an important role in the predict-

ive model. Aside from an interesting overview of the data

one should interpret the results of this regression with cau-

tion as the spatial autocorrelation cannot be fully ruled out

with only a spatial anchor point (distance to city center).

Confirming this finding, Figure 4 shows that the geographic

distribution of potential charging demand is clearly skewed

towards the city center (the darker the cell, the more de-

mand), yet not entirely concentrated there but also widely

spread throughout the business area of Car2Go in Amster-

dam. Figure 13, 14, \ref{fig:muc dmdand 16 in Appendix

II show similar patterns for the remaining four cities18.

Nonetheless, parking patterns and hence charging demand

vary substantially per city. Figure 5 shows the scaled dis-

tribution of charging demand across the five cities. Munich

and Berlin, having very similar demand patterns, both have

many low-demand cells, i.e. cells where cars either do not

park very often (remote areas) or do not stay long enough

to generate demand (city center and train stations). In as-

cending order, Stuttgart, Copenhagen, and Amsterdam tend

to have more cells with a high average charging demand.

18Hexagons on map are not representative of their actual size
(see Data preparation)

Figure 5: Charging demand density across all cities

Note: The density of the average charging demand per cell per
month. All cities have different average demand distributions
due to the city of the city, hence the number of cells in the
grid, due to the number of shared vehicles and the city’s road
infrastructure.
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This heterogeneous distribution can partly be explained by

varied road infrastructure and partly by the fact that the

latter three cities have a smaller business area and therefore

fewer cells which lead to more demand per cell on average.

Ultimately, this underlines the need for a differentiated cal-

culation of the target variable (the optimal number of char-

ging stations per location) which was introduced by varying

revenue and private vehicle-shares of total demand per city.

When aggregating charging demand per cell a potential pit-

fall is not to consider the number of simultaneously parked

vehicles per cell. The assumption is made that in an optimal

scenario a given cell would hold a constant parking demand

(or less) over 24 hours as illustrated in Figure 6.

Figure 6: Optimal density of simultaneous parking in-

stances per hour and cell

Note: The calculation of the number of potentially profitable
stations per cell assumes a uniform distribution as displayed in
the graph. This assumption of an optimal, uniform distribu-
tion infers that there would never be more cars than charging
outlets (2x per station) in a cell at a time.

As each charging station can host a maximum of two cars

at a time, a constant occupation without peaks through

parking instance overlaps would be ideal to aggregate the

charging demand without accidentally over accounting for

situations where a cell has a capacity for two cars (one char-

ging station) but three cars park in the cell at the time. To

confirm this assumption, the actual distribution of simultan-

eous parking instances for the top 10% of charging demand

creating cells was studied.

As can be seen in Figure 7, the assumption holds true for the

majority of observations in the top 10% cells. Only a mere

2% of these 10% top ten cell observations hold more than

two simultaneous parking instances in a given hour and date.

However even these peaks are, in most cases, considered as

Figure 7: Actual density of simultaneous parking instances

per hour of top 10% cells

Note: The cells with the top 10% most charging demand
mostly have only one or two cars parked in it. The violin plot’s
width indicates the number of observations per timestamp in
any cell of the top 10% cells. This finding affirms the assump-
tion of a uniform distribution 6 of parked parks.

41% of the top 10% of cells hold more than one (calculated

to be profitable) charging station.

3.5 Predictive model
Incorporating the previously collected ideas and modeling

assumptions (see Related work and literature), a predictive

model is created using the Random Forest algorithm which

was developed by Breiman et al. [9] and its implementation

in the R package randomForest [23]. The implementation

requires a model to execute its algorithm on and needs only

a few parameters such as ntree (number of trees to gen-

erate), mtry (number of variables to be sampled at each

node split), classwt (weights for outcomes in classification

problems) and cutoff (confidence level for class prediction).

The model is optimized with these parameters measured

against the F1 score which will be further elaborated upon.

The final model is built with the following feature space:

Qd,yr(cid) ∼
∑

poi1 + ... ...+
∑

poij+∑
poi.adj.r11 + ...+

∑
poi.adj.r1j+∑

poi.adj.r21 + ...+
∑

poi.adj.r2j+

1

n

n∑
i=1

ratingj,cid+

1

m

m∑
i=1

pricej,cid+

d(cid, citycenter)

(13)
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WithQd,yr(cid) being the calculated optimal number of char-

ging points in cell cid, poi {j} being one observation of the

point of interest of type j. poi.adj.r1j and poi.adj.r2j one

observation of PoI type j in the first and second willingness-

to-walk ring respectively, the distance to the city center

d(cid, citycenter) and finally the average price and rating

per cell.

To validate the results and confirm the predictive power of

the model, a 5-fold cross validation is applied when calculat-

ing results and performance measures. As one of the goals

of this work is to validate whether the model can be success-

fully applied to new cities or areas where no charging infra-

structure has yet been placed, each fold splits the data set

into 4 observed cities against one. For example, the model

is trained on Copenhagen, Berlin, Munich, and Amsterdam

and is then applied to Stuttgart. For all five combinations,

the performance measures and predictions were recorded.

To further test the added predictive value of the modeling

assumptions information was added iteratively to the model

and measure its change in performance. The following mod-

els have been considered:

Table 7: Iterative model creation

Model

name

PoI

density

All

PoIs

WTW

r1

WTW

r2

Distance

center

Model 1 x

Model 2 x x

Model 3 x x x

Model 4 x x x x

Model 5 x x x x x

Testing different ranges for the willingness-to-walk, hence

cell sizes, is not pursued as the hexagonal cell size applied in

this research is conform with previous research and changes

would likely eliminate information from the data. An in-

crease in the WTW ring size could cause loss of information

because actual charging stations in the observed cities are

on average ≈ 302 meters19 away from each other.

Assuming that charging station operators have placed the

stations with consideration of anticipated demand and know-

ing that actual charging points have an influence on po-

tential charging demand [11], the proposed grid granular-

ity captures most of the interaction effect two charging sta-

tions have on each other and the potential charging demand.

19As observed in the five target cities

Increasing the hexagon size would group more stations to-

gether and reduce information for the predictive model.

Performance measures

In this predictive classification problem, accuracy, or the ra-

tio of correctly classified cases to the total number of cases,

is used as a baseline measure to evaluate model perform-

ance. While it is an easily interpretable measure it should

be taken with a grain of salt in classification problems and

may not always be the ideal measure for a definitive evalu-

ation. The accuracy paradox states that “predictive models

with a given level of accuracy may have greater predictive

power than models with higher accuracy”[63], since the pre-

dictive power depends on the target of the classification.

For example, in a binary classification problem where the

classes are highly unevenly distributed (99% of observations

are zero, only 1% is one) and the target is one, an accuracy

of 99% looks promising at first but is not any better than

a naive model. Nonetheless, accuracy remains an import-

ant measure in this case since it is almost as important to

identify cells with zero charging stations as it is to identify

the ones with charging stations to avoid poor placement of

stations.

According to the accuracy paradox, it may, at times, be ad-

visable to choose a model with a lesser accuracy if it has a

stronger predictive power with regards to the target. For

this reason, other measures often used in classification prob-

lems are the true positive rate (TPR) and true negative rate

(TNR), also referred to as sensitivity and specificity respect-

ively.

TPR =
TP

(TP + FN)
TNR =

TN

(FP + TN)
(14)

The rates are calculated using a confusion matrix which

compares predicted with actual values (see Figure 8). Both

rates are typically visualized on a receiving operator curve

(ROC), showing the trade-off between TPR and (1-FNR) [57].

However, evaluating ROC as a performance measure for

skewed data sets in machine learning classification problems,

Jeni et al. [35] find that “while ROC was unaffected by

skew, precision-recall curves suggest that ROC may mask

poor performance.” and suggest that using the F-score (also

F1) improves balanced measurement. A second advantage

of the F1-measure is that it can report on the performance of

a multinomial classification (more than two classes, i.e. bin-

ary classification) problem by weighting and summing up

the performance measure per class (in this case whether to
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Figure 8: Confusion matrix

place zero, one, two, three, . . . charging stations) [30]. The

F1-score is a weighted sum of the predictive precision and

recall, where β is the relative importance of precision com-

pared to recall.

PR =
TP

(TP + FP )
RC = TPR =

TP

(TP + FN)
(15)

F =
(β2 + 1)RCPC

β2PC +RC
(16)

To account for skewed classes in the data, Zhang et al. [74]

and Sokolova et al. [58] propose a micro and macro weighted

F-score where the micro weighted score is biased towards the

most frequent class (i.e. zero charging stations per cell) and

the macro weighted score towards the least frequent class

(i.e. more than three charging stations per cell).

PRmicro =

∑|C|
i=1 TPi∑|C|

i=1 TPi + FPi

RCmicro =

∑|C|
i=1 TPi∑|C|

i=1 TPi + FNi

(17)

PRmacro =
1

|C|

|C|∑
i=1

TPi

TPi + FPi

RCmacro =
1

|C|

|C|∑
i=1

TPi

TPi + FNi

(18)

where C describes the class.

The models are evaluated with the F1 macro & micro weighted

score and overall accuracy as calculated in the R package

mldr by Charte et al.[12].

3.6 Modeling assumptions
To adjust the potential charging demand to include fur-

ther potential charging demand from private vehicles, the

amount of kWh charged into Car2Go vehicles in Amsterdam

in 2016 is calculated and put in relation to the total amount

charged by all vehicles in Amsterdam in 2016. The resulting

number, adjusted for fleet size per city, is used to estimate

the total charging demand in the remaining four analyzed

cities assuming that all cities have sufficiently similar com-

muting and infrastructure usage patterns. A second assump-

tion is made by increasing the demand linearly for every cell.

While the patterns for simultaneous parking instances per

cell do not diverge significantly from the optimal distribu-

tion assumption, rare double counting may arise (Figure 6

and 7).

Whether a location is suitable for the profitable placement

of a charging station is calculated with a pessimistic scen-

ario in which a charging station operator must pay full retail

price for the energy he sells through his station. Addition-

ally, charging station locations are deemed profitable if suf-

ficient demand to cover the cost of one station is present.

The profit margin per kWh sold considered in the calcula-

tion merely assumes one car per station while the station

type on which the cost calculation is based has the capa-

city of providing energy for two cars at the same time. In

simultaneous parking instance cases, at least two cars can,

therefore, be served which reduces the impact of the parking

duration distribution assumption.

Once placed, it is assumed that a charging station will be

used whenever a car is parked in the station’s cell. Both

Car2Go and DriveNow already have incentive systems in

place where customers are rewarded (if grossly negligent

even punished) for charging the cars. Additionally, this as-

sumption is based on the fact that all five cities in focus have

regulations which bar non-EVs to park on charging station

parking spots. A free parking spot within an 110-meter ra-

dius is certainly also an incentive for both car sharing and

private users.
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4. RESULTS
The final model performs well above any naive model, con-

firming that the assumptions made throughout this paper

indeed add value and that using point of interest informa-

tion significantly improves the predictive results. Table [8]

shows the detailed results, where the best performing meas-

ure across all models is marked with an asterisk.

The model shows consistent improvement in performance

when more information is added. The macro F-measure

(weight on the importance of predicting > 0 charging sta-

tions) is highest in model 5, indicating that a model with all

information available is by far best at predicting charging

station locations while it is slightly less strong than model

2 at predicting locations where no charging station should

be placed. The micro F-score, weighing the importance of

predicting no charging station, is highest in model 2 mak-

ing it the most favorable for avoiding the mispositioning of

charging stations, but poorly suitable for predicting profit-

able locations. Model 3 ranks highest in overall accuracy,

but, just as model 2, fails to identify suitable locations well.

Table 8: Model performance results

City Naive

Model

Model

1

Model

2

Model

3

Model

4

Model

5

Macro

F1

26.2% 23.1% 39.3% 44.9% 46.4% 50.3%*

Micro

F1

92.9% 85.9% 93.4%* 91.3% 91.3% 91.3%

Accuracy 93.5% 92.4% 93.6% 94.7%* 94.3% 94.6%

Model 5 is best at identifying profitable locations and thus

the best overall model. Consequently, the following analysis

is solely based on the results of Model 5 with Figure 9 show-

ing the scaled importance of predictors when training the

model on the cities of Amsterdam. Further similar graphs

displaying the scaled variable importance of the remaining

four training iterations can be found in Appendix II (Figure

17, 18, \ref{fig:imp minus mucand 20).

The %IncMSE in Figure 9 displays the increase in the mean

squared error of predictions (estimation based on an out-

of-bag cross validation) if variable i is permutated, i.e. its

values shuffled randomly, compared to a model with a non-

shuffled i. It therefore shows how important the variable

is to reduce uncertainty in the model. The IncNodePurity

indicator lists features which, when used for a split in a

decision tree, reduced the impurity of a given node the most

on average across all trees in the Random Forest.

The graph in Figure 9, obtained from a model trained on

the observations of Copenhagen, Berlin, Stuttgart and Mu-

nich lists, as the 5 most important variables to decrease the

MSE, point of interest observations in willingness-to-walk

ranges 1 and 2. All, except for atm_adj_r1, are points of

interest such as dentist or insurance_agency where one

would typically spend an extended amount of time and can

hence accumulate plenty of potential charging demand. But

also observations such as grocery_or_supermarket or law-

yer within the very same cell significantly contribute to

the predictive power of the model. While still an import-

ant feature, point_of_interest, or the density of PoIs, is

much less a decisive factor than other types of PoIs. It is

important to note that the specific types of points of in-

terest are not proxy for density. Looking at e.g. three of

the most important indicators such as insurance_agency,

liquor_store and hair_care only 0.2% of all PoI observa-

tions are labled liquor_store and 0.5% insurance_agency,

while almost 1% are labeled hair_care, it becomes apparent

that not the number but the type of point of interest plays

an important role.

Figure 9: Variable importance for model without Amster-

dam

Note: The variable importance shown in this plot mainly
lists PoI types such as restaurants, lawyer’s office or dent-
ist, where one is likely to spend an extended amount of time.
The notation of adj.r1 or adj.r2 indicates the willingness-to-
walk of people who just finished their trip in a given cell.
For example, the number of insurance agencies which are two
hexagonal cells away (max. 642-meter walking distance) can
have a great influence on the potential charging demand of a
cell.

While ensemble learning methods such as Random Forests,

even with dozens of trees created, correct for the habit of

decision trees to overfit data [33], overfitting will eventu-

ally occur and the model will perform worse with increas-
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ing size when validated on test data. For the data set at

hand, the optimal number of trees is 98 as can be seen in

Figure 10 where the red dotted line represents the optimal

tree size for the model. The optimal number of variables to

choose from at each split (mtry) is 3 for the model and data

in use. Both measures were derived and tested in a five-

fold cross-validation to ensure robustness. Random Forests

can further be optimized by manipulating the parameters

classwt and cutoff, however, in this case, the tweaking

of the parameters did not significantly improve results as a

higher cutoff in most cases increases the recall of a pre-

diction and the F-measures already account largely for dif-

ferences in class weight. Finally, the graph also shows that

training the model without Berlin greatly increases the out-

of-bag error rate, likely due to Berlins large and rich set of

informative points of interest.

Figure 10: Optimal number of Random Forest trees

Note: The number of trees built in the Random Forest and
the reduction in out-of-bag error shows that for this paper’s
data and model, an optimal forest size of 98 trees should be
created.

Practical evaluation

In a new city where, in theory, the charging station oper-

ator has no knowledge of the city except for the point of

interest constellation, the model can serve as a decision sup-

port system for the placement of charging stations. Table [9]

illustrates a sample calculation for a new city with different

scenarios of prediction accuracy achieved by the model.

Scenario 2 simulates a situation where a charging point op-

erator would have built 100 stations with a predictive model

but using the model he can identify 30 out of 50 profitable

stations which can cover 60% of the demand. As the oper-

ator has no way of knowing which station out of the pre-

dicted 50 will be a true positive he will build all of them.

Since in all 5 cities 80% of stations deemed profitable are

within at least 300 meters20 of an actual station, 80% of the

falsely predicted stations can replace a “regular” station out

of the initial 100. However, 20% of the false positives may

be at risk of being too far away and receiving too little char-

ging demand. Hence a penalty of 4 stations or 20% on the

falsely predicted stations is calculated. The operator can

cover 60% of demand with 30 stations, 20% with the “regu-

lar” 20 stations of falsely predicted stations, has to build 4

more stations to cover the potentially missed demand (pen-

alty) and lastly build 20 more “regular” stations to reach

100% demand coverage, saving 26 stations overall.

Table 9: Example of station savings calculation

Scenario 1 Scenario 2 Scenario 3

Actual 100 100 100

Calculated 50 50 50

Correctly

Predicted

50 30 15

Demand

covered

100% 60% 30%

Penalty (20%) 0 4 7

Station need 50 74 92

Total Savings -50 -26 -8

Calculating the potential savings using a predictive model21

and approach described above, it is concluded that in the

case of hypothetically building charging stations, operators

could save up to 11% in fixed cost investment per city. In

detail, the hypothetical savings for operators amounted to

82,000 Euros in Amsterdam, 16,000 Euros in Copenhagen,

53,000 Euros in Berlin, 20,000 Euros in Stuttgart and 11,000

Euros in Munich in fixed cost per year.

Figure 11 shows the results of the final prediction in Ams-

terdam, the calculated stations and the actual stations on

a map. The blue triangles represent the predicted stations,

the red squares the actual stations and the green diamond

shapes the locations where the calculation identified the po-

tential demand for profitable stations. It is apparent that

the model seems to predict more stations in the city cen-

ter where the point of interest information density is much

higher than in the outskirts.

20The average distance between actual stations is 315 meters,
hence about 80% of potentially profitable stations are as
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Figure 11: Actual, calculated and predicted charging stations in Amsterdam

Figure 12: Zoom in: Actual, calculated and predicted charging stations in Amsterdam

Figure12 22 confirms this finding and illustrates the accur-

acy with which the model predicts charging locations in the

city center. Nonetheless, the model also matches numerous

calculated charging station locations in the outer parameters

reachable as regular stations if misclassified.
21Best macro F-measure performing model 5
22Points on map repelled from each other with geom.jitter()
to avoid overplotting but which causes the points to be more
ordered, hence not fully accurately displayed.

of the city. Surprisingly the model also aims to place a few

charging stations where no calculated, only actual charging

stations are located. Figure 12 confirms this finding when

looking at a close up of the city center where various pre-

dicted points are closer to actual points than to calculated,

optimal locations.

Since the model was trained in four different cities, some

profitable, calculated charging station locations may have
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similar characteristics to the actual stations in Amsterdam,

hence the model identifies those as optimal while the training

locations were not characterized as such initially. It also

underlines the need for further research and collection of

data when defining optimal (profitable) stations, as it seems

that the current calculation has missed some.

5. DISCUSSION
The results of the final predictive model clearly show that

point of interest information can be used to predict charging

locations and can be applied across cities. While the results

show a variation in performance for different cities, they are

consistent in displaying the ability of the model to detect

optimal charging locations in a new city. The predicted loc-

ations matched both actual charging station locations and

locations which were identified as profitable. The “head-

strong” behavior of the Random Forest model shows that

the learning method can ingest information on optimal loc-

ations and even make up for the shortcomings of the method

for calculating optimal charging station locations. Success-

ive research on the topic should, therefore, aim to obtain

more information from charging station operators on the

profitability of stations to improve the model’s understand-

ing and correctness about the target variable. As a signi-

ficant improvement in accuracy was observed when adding

spatial components to the model, it is concluded that ex-

tending this information in future models will likely have

further improving effects.

The approach and model, however, can already be used by

charging station operators, who are looking to expand their

portfolio in current cities or to build charging stations in

completely new cities, as a business decision support sys-

tem. Operators can identify interesting locations easily and

fast without having to acquire potential location informa-

tion exclusively through costly surveys, studies, and inter-

views. The model can help in this case with a pre-selection of

potentially interesting locations before further scoping and

evaluation.

Especially when expanding to new cities, operators need to

be careful about the predictions of the model. As discussed

above[16], different weights in importance can be assigned

to either the positive identification of optimal locations or

the positive identification of non-optimal stations to avoid

mispositioning charging points and missing out on charging

demand. For this purpose, a model can be optimized by

maximizing either the F-micro or macro measure and ad-

justing β in the F-score calculation to rebalance precision

and recall. While the model should not be used as a sole

decision-making tool it can still reduce uncertainty and risk

when entering new markets.

Another clear advantage of this modeling approach is the

transferability across cities. Unlike previous attempts fo-

cusing on the prediction of charging demand in kWh, this

approach first identifies profitable locations per city, hence

scales the strongly varying amounts of kWh demand and

only then applies a predictive model. The modeling ap-

proach has the potential to improve much further with more

information on which stations are confirmedly profitable and

personal EV usage patterns.

Carsharing operators can, as they grow, use the model to

predict charging station location tailored to the need of their

customers. The car-sharing companies could, if a sufficient

level of one’s own demand is reached, start constructing own

stations to decrease cost or partner with a station provider to

offer exclusive car sharing charging stations with an ensured

profitability for station operators. Overall reducing risk and

increasing informedness in investment decision making for

car-sharing station placement should reduce the impact of

the chicken-egg dilemma and increase EV and car sharing.

Finally, car sharing operators could use their real-time data

and point of interest information to improve predictions on

hourly demand and make use of this information to distrib-

ute charging demand across the city for more flexibility and

efficiency.

6. CONCLUSION AND FUTURE WORK
This study finds significant gains in targeted accuracy for

predicting optimal locations of charging stations when adding

multiple layers of point of interest information. The ap-

proach can be used by charging station operators as a de-

cision support system for expanding the charging station

network by reducing risk and speeding up the discovery pro-

cess. The study found that, for five European cities, poten-

tial savings of up to 11% in fixed cost can be achieved with

overall prediction accuracies of about 95%. Future research

can extend and improve the modeling approach by collect-

ing and adding information on confirmed profitability from

charging station operators, private EV parking patterns and

further sources of PoI information. When fast charging is

introduced for the car sharing companies in focus of this re-

search, further analysis will be needed to create and train

models that can predict both fast and slow charging sta-

tion locations. For potentially even more refined and robust

results, deep learning algorithms could be applied to this

modeling approach. As such algorithms have proven to be

very successful in image and pattern recognition [67], defin-

ing the distance between every cell in the city to have an

“image-like” representation of the data on a map, could en-

able deep learning techniques to improve the model further.

17



7. APPENDIX I, TABLES

Table 10: Points of interest variables used for all

cities

doctor, car repair, electronics store, church, beauty salon,

cafe, art gallery, bakery, book store, electrician,

bus station, clothing store, accounting, bar, bicycle store,

atm, dentist, car dealer, cemetery, convenience store,

department store, car rental, courthouse, embassy,

casino, car wash, bowling alley, airport, campground,

amusement park, aquarium, point of interest,

general contractor, food, health, hair care, plumber,

locksmith, lodging, park, funeral home, lawyer, finance,

painter, gym, furniture store, jewelry store, city hall,

moving company, florist,museum, insurance agency,

fire station, local government office, hospital,mosque,

night club, parking, library, place of worship, gas station,

pet store, laundry, hardware store, liquor store, bank,

natural feature, real estate agency, school, store,

travel agency, physiotherapist, grocery or supermarket,

meal delivery, veterinary care, shoppingmall, pharmacy,

meal takeaway, university, roofing contractor, police,

premise, shoe store, stadium, subpremise, storage,

subway station, spa, train station, zoo, home goods store,

transit station, restaurant,movie theater, hindu temple

Table 11: Most significant influencers of profitable

charging stations (linear regression, across all cities)

Dependent variable:

profitable many

poi density 0.001∗∗∗

(0.0004)

car rental 0.108∗∗∗

(0.024)

charging point 0.422∗∗∗

(0.012)

parking 0.154∗∗∗

(0.034)

university 0.055∗∗∗

(0.015)

bank adj r1 0.025∗∗∗

(0.008)

natural feature adj r1 0.294∗∗∗

(0.055)

premise adj r1 0.044∗∗∗

(0.016)

bar adj r2 0.008∗∗∗

(0.003)

hair care adj r2 0.007∗∗∗

(0.003)

parking adj r2 0.056∗∗∗

(0.010)

subway station adj r2 0.038∗∗∗

(0.012)

distance city center 0.00001∗∗∗

(0.00000)

Observations 14,809

R2 0.143

Adjusted R2 0.126

Residual Std. Error 0.704 (df = 14519)

F Statistic 8.412∗∗∗ (df = 289; 14519)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12: Table of notation

Variable Description Unit

pi Parking instance record

id Unique id of the car tag

lon Longitude 0◦ 00’ 0.036” DMS

lat Latitude 0◦ 00’ 0.036” DMS

fuels Fuel level at start (s) % of battery

fuele Fuel level at end (e) of trip % of battery

ts Start time (s) of trip timestamp

te End time (e) of trip timestamp

fuel.adjs,pt Adjusted fuel level when in lockdown % of battery

∅δmin Average time (in minutes) per percent of charge loaded
min

%fuel
t.adjs,pt Adjusted time stamp timestamp

∅δcharg Energy charged per minute on average
%fuel

min
fueltpi−1,pi

Battery charge used for the previous trip % of battery

Qd,pi Potential charging demand % of battery

Qd,m(cid Aggregate demand per cell and month
%ofbattery

month

Qd,yr(cid Aggregate demand per cell and year
%ofbattery

year
Qd,st(cid) Number of stations expected to be profitable per cell Charging stations

margin Revenue for operator from sale minus purchase price of energy
e

100
profit Profit from charging stataion for operator e

cost Cost of charging station placement and operations e

d Distance to city centering Meters
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8. APPENDIX II, FIGURES

Figure 13: Relative charging demand per hexagonal cell

in Berlin

Figure 14: Relative charging demand per hexagonal cell

in Copenhagen

Figure 15: Relative charging demand per hexagonal cell

in Munich

Figure 16: Relative charging demand per hexagonal cell

in Stuttgart
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Figure 17: Variable importance for model without Berlin

Figure 18: Variable importance for model without Copen-

hagen

Figure 19: Variable importance for model without Munich

Figure 20: Variable importance for model without Stut-

tgart
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